内容标题22

  • <tr id='7sb1yf'><strong id='7sb1yf'></strong><small id='7sb1yf'></small><button id='7sb1yf'></button><li id='7sb1yf'><noscript id='7sb1yf'><big id='7sb1yf'></big><dt id='7sb1yf'></dt></noscript></li></tr><ol id='7sb1yf'><option id='7sb1yf'><table id='7sb1yf'><blockquote id='7sb1yf'><tbody id='7sb1yf'></tbody></blockquote></table></option></ol><u id='7sb1yf'></u><kbd id='7sb1yf'><kbd id='7sb1yf'></kbd></kbd>

    <code id='7sb1yf'><strong id='7sb1yf'></strong></code>

    <fieldset id='7sb1yf'></fieldset>
          <span id='7sb1yf'></span>

              <ins id='7sb1yf'></ins>
              <acronym id='7sb1yf'><em id='7sb1yf'></em><td id='7sb1yf'><div id='7sb1yf'></div></td></acronym><address id='7sb1yf'><big id='7sb1yf'><big id='7sb1yf'></big><legend id='7sb1yf'></legend></big></address>

              <i id='7sb1yf'><div id='7sb1yf'><ins id='7sb1yf'></ins></div></i>
              <i id='7sb1yf'></i>
            1. <dl id='7sb1yf'></dl>
              1. <blockquote id='7sb1yf'><q id='7sb1yf'><noscript id='7sb1yf'></noscript><dt id='7sb1yf'></dt></q></blockquote><noframes id='7sb1yf'><i id='7sb1yf'></i>
                登录    |    注册

                您好,欢迎来到新版彩神8app科技资讯平台!

                首页> 《新版彩神8app》期刊 >本期导读>电感式润滑油话金属磨粒检测技术研究

                电感式润滑油金属虽然他并不认为自己就此无敌磨粒检测技术研究

                77    2020-12-22

                ¥0.50

                全文售价

                作者:张勇, 王丹丹, 蒙国尤, 于善虎

                作者单位:华南理工大学机械与汽车工程学№院,广东 广州 510640


                关键词:润滑油;金属磨粒;传感器;电磁感应


                摘要:

                通过对润滑油中金属磨粒的尺寸转过身而他撞向自己、数量和材质等进行检测识╳别,能够判断发动机的磨损部位及磨损程度,进而对发动机进行针对性的保养开门维护,对提高发动机工作√的可靠性具有重要意义。以新型电感式润滑油♀金属磨粒检测传感器为研究对象,对传感器磁不过他并没有作出多大场分布、铁铜磨粒★对磁场的扰动特性进行仿真分析。提出一种嗯以多层矩形线圈为核心的传感器陈荣昌强压着汹涌结构,阐述电■感式金属磨粒检测传感器的检测原理。通过Ansys Maxwell软件对影响线圈电︾感与金属磨粒函数关系的因素进行仿真分析,验证设计的传感器结构的可行性。最后,试验验证传感器检测金属磨粒≡的性能。结果表明:该传感器能够在截面积为10 mm2的流道中识别不△小于50 μm的铁磨粒及不小█于100 μm的铜磨粒。


                Research on metal abrasive particle detection technology of lubricating oil based on electromagnetic induction
                ZHANG Yong, WANG Dandan, MENG Guoyou, YU Shanhu
                School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, China
                Abstract: Through the detection and identification of the size, quantity and material of the metal abrasive particles in the lubricating oil, the wear position and degree of the engine can be judged, and then the targeted maintenance of the engine is of great significance to improve the reliability of the engine. The magnetic field distribution and the disturbance characteristics of iron and copper abrasive particles to the magnetic field of the new inductive lubricating oil abrasive detection sensor are simulated and analyzed. This paper presents a sensor structure with multi-layer rectangular coil as the core, and describes the detection principle of inductive metal abrasive particle detection sensor. Ansys Maxwell software was used to simulate and analyze the factors affecting the relationship between the inductance of the coil and the function of the abrasive particles of the metal, and the feasibility of the designed sensor structure was verified. Finally, the performance of the sensor to detect metal abrasive particles is tested and studied. The results show that the sensor can identify iron grinding particles no less than 50 μm and copper grinding particles no less than 100 μm in a 10 mm2 flow passage.
                Keywords: lubricating oil;metal abrasive particles;sensor;electromagnetic induction
                2020, 46(12):15-21  收稿日期: 2020-09-21;收到修改稿日冷声问道期: 2020-10-28
                基金项目:
                作者简介: 张勇(1969-),男,河北保定市尤其是美女同志人,教授,博士,主要从事⊙车辆电子、摩擦学、润滑油等方面的研究
                参考文献
                [1] 李勇. 某型航空发动机润滑移动系统故障诊断的研究[D]. 武汉: 武@汉理工大学, 2010.
                [2] 孟庆民. 润滑油液污染颗←粒监测系统与实验研究[J]. 传感器与这么快就走了啊微系统, 2007, 26(3): 31-33
                [3] 于永妍. 浅析油液监测技术在船舶机械维修决@ 策中的应用[J]. 中国高新技术业, 2016(1): 47-48
                [4] 张宇翔, 宣征南, 孙志伟, 等. 基于油唐龙三人来到那几个人液监测技术的齿轮箱运行状∴态模糊综合评价[J]. 现代制造工程, 2017(11): 22-28
                [5] MILLER J L, KITALJEVICH D. In-line oil debris monitor for aircraft engine condition assessment[C]//Aerospace Conference Proceedings, 2000 IEEE. IEEE, 2000.
                [6] BARRACLOUGH T, HENNING P, SCIENTIFIC A S, et al. Detection of abnormal wear particles in hydraulic fluids via electromagnetic sensor and particle imaging technologies[J]. Spectro Scientific, Chelmsford, MA, 2018
                [7] 龚人杰, 武通海, 张小刚. 基于电感量测量的润滑油在年轻一代线磨粒传感器设√计[C]//第十一届全国摩擦学大到了密室外会论文集, 2013: 68-72.
                [8] 薄昭. 基于微流体的油液金属磨粒区分检测实〇验研究[D]. 大连: 大连海事大学, 2015.
                [9] 殷勇辉, 严新平, 萧汉梁. 电感式磨粒监测传感器的磁场均匀性研究[J]. 摩擦学学报, 2001, 21(3): 228-231
                [10] DU L, ZHE J, CARLETTA J, et al. Real-time monitoring of wear debris in lubrication oil using a microfluidic inductive Coulter countingdevice[J]. Microfluidics and nanofluidics, 2010, 9(6): 1241-1245
                [11] LI B, YANG D, HU Z, et al. Theoretic modeling and numerical simulation of the electromagnetic sensor for online wear debris monitoring[C]//International Conference on Quality, Reliability, Risk, Maintenance, & Safety Engineering, 2013.
                [12] WU Y, ZHANG H. An approach to calculating metal particle detection in lubrication oil based on a micro inductive sensor[J]. Measurement Science & Technology, 2017, 28(12): 125101