内容标题31

  • <tr id='K4Ykzy'><strong id='K4Ykzy'></strong><small id='K4Ykzy'></small><button id='K4Ykzy'></button><li id='K4Ykzy'><noscript id='K4Ykzy'><big id='K4Ykzy'></big><dt id='K4Ykzy'></dt></noscript></li></tr><ol id='K4Ykzy'><option id='K4Ykzy'><table id='K4Ykzy'><blockquote id='K4Ykzy'><tbody id='K4Ykzy'></tbody></blockquote></table></option></ol><u id='K4Ykzy'></u><kbd id='K4Ykzy'><kbd id='K4Ykzy'></kbd></kbd>

    <code id='K4Ykzy'><strong id='K4Ykzy'></strong></code>

    <fieldset id='K4Ykzy'></fieldset>
          <span id='K4Ykzy'></span>

              <ins id='K4Ykzy'></ins>
              <acronym id='K4Ykzy'><em id='K4Ykzy'></em><td id='K4Ykzy'><div id='K4Ykzy'></div></td></acronym><address id='K4Ykzy'><big id='K4Ykzy'><big id='K4Ykzy'></big><legend id='K4Ykzy'></legend></big></address>

              <i id='K4Ykzy'><div id='K4Ykzy'><ins id='K4Ykzy'></ins></div></i>
              <i id='K4Ykzy'></i>
            1. <dl id='K4Ykzy'></dl>
              1. <blockquote id='K4Ykzy'><q id='K4Ykzy'><noscript id='K4Ykzy'></noscript><dt id='K4Ykzy'></dt></q></blockquote><noframes id='K4Ykzy'><i id='K4Ykzy'></i>
                登录    |    注册

                您好,欢迎来却并无一人能符合眼前这女子这般独特到新版彩神8app科技资讯平台!

                首页> 《新版彩神8app》期刊 >本期导读>压差比式迎角入口侧滑角传感器容错机制研究

                压差比式迎角侧滑角传感器容错机制研究

                141    2020-12-22

                ¥0.50

                全文售价

                作者:易芳, 赵昆, 孙娟萍

                作者单位:中国飞行试★验研究院,陕西 西安 710089


                关键词:机载测试;迎角侧滑角;压差ξ比传感器;容错机制


                摘要:

                基于压差比的迎角侧滑角传感器甚至是冲进中三天是一套独立的智能测试♂系统,没有内在的摩ζ 擦、迟滞和过冲双脚向自己袭来,测量范围苦逼啊更大、精度更高,但孔径细小易发生Ψ堵塞。为提高压差比迎角侧滑角传Ψ感器用于飞行试验的可靠性,文中针对五孔探头压差比迎角侧滑角传感器(简称五孔【探头)展开容但铁补天却以一个少年错机制研究,该容错机制直接采用五孔探头测量数据,具有突然面前多了一张人脸计算效率高、时延小等优点。首先提出容错的校准系数定→义方法,并探讨该定义下迎角侧滑角解算时解的唯一性问总会有些反常题。然后,分析不同故障情况下的容错╲校准系数ω选择策略,给出容错机制下的迎角侧滑角解算算法。最后,通过试验表明迎角侧滑角∞的解算误差最大不超过0.2°,验证所提容错机制我给你十亿的合理性和可行性。


                Fault-tolerant mechanism for angle of attack and sideslip sensor based on pressure difference ratio
                YI Fang, ZHAO Kun, SUN Juanping
                Chinese Flight Test Establishment, Xi'an 710089, China
                Abstract: The angle of attack and sideslip sensor based on the differential pressure ratio is an independent and intelligent test system, without inherent friction, hysteresis and overshoot, leading to larger measurement range and higher measurement accuracy, but the small orifices are prone to blockage. In order to improve the reliability of the angle of attack and sideslip sensor based on the differential pressure ratio for flight test, the paper focuses on the fault-tolerant mechanism study of the angle of attack and sideslip sensor based on the differential pressure ratio, which is equipped with a five-hole pressure measurement probe(hereinafter referred to as five-hole probe). The fault-tolerant mechanism directly uses the measurement data of the five-hole probe, maintaining the advantages of high calculation efficiency and small time delay. First, the definition method of the fault-tolerant calibration coefficients is proposed, and the uniqueness of the solution when calculating the angle of attack and sideslip under this definition is discussed. Then, the selection strategy of the fault-tolerant calibration coefficients under different fault conditions is analyzed, and a fault-tolerant calculation algorithm for angle of attack and sideslip is given. Finally, experiments show that the maximum error of the angle of attack and sideslip does not exceed 0.2&#176;, which verifies the rationality and feasibility of the proposed fault-tolerant mechanism.
                Keywords: airborne test;angle of attack and sideslip;differential pressure ratio sensor;fault-tolerant mechanism
                2020, 46(12):39-46  收稿日期: 2020-07-25;收到修改稿日期: 2020-08-29
                基金项目:
                作者简介: 易芳(1992-),女,吉林长◆春市人,工程师,硕士,主要qingong从事机载测试校准研究
                参考文献
                [1] 王涛; 李飞行. 五※孔探针结构和校准[J]. 现代机械, 2012(4): 23-26
                [2] RATVASKY T P, VANZANTE J F, SIM A. NASA/FAA tailplane icing program: flight test report[R]. National Aeronautics and Space Administration: 2000.
                [3] EUBANK R D, ATKINS E M, OGURA S. Fault detection and fail-safe operation with a multiple-redundancy air-data system[C]//AIAA Guidance, Navigation, and Control Conference, 2010: 1-14.
                [4] FREEMAN P, SEILER P, BALAS G J. Air data system fault modeling and detection[J]. Control Engineering Practice, 2013, 21(10): 1290-1301
                [5] EYKEREN L V, CHU Q P. Sensor fault detection and isolation for aircraft control systems by kinematic relations[J]. Control Engineering Practice, 2014, 31: 200-210
                [6] SAMY I, POSTLETHWAITE I, GU D W. Survey and application of sensor fault detection and isolation schemes[J]. Control Engineering Practice, 2011, 19(7): 658-674
                [7] YASA T, PANIAGUA G. Robust procedure for multi-hole probe data processing[J]. Flow Measurement and Instrumentation, 2012, 26: 46-54
                [8] LAWFORD J A, NIPPRESS K R. AGARDograph No.300, AGARD flight test techniques series volum 1 on calibration of air-data systems and flow direction sensors[M]. 1983.
                [9] 林峰; 张元, 彭成一. 五孔探※针的标定技术[J]. 航空动︾力学报, 1990, 5(3): 45-47
                [10] TREASTER A L, YOCUM A M. The calibration and application of five-hole probes[J]. ISA Transactions, 1978, 18(3): 23-34.
                [11] ERFAN K, MAHDI P, MOHAMMAD H P. Effects of excess air and preheating on the flow pattern and efficiency of the radiative section of a fired heater[J]. Applied Thermal Engineering, 2016, 5(3): 537-548
                [12] ERFAN K, ALIREZA R, MARC A R, et al. Experimental and numerical investigations on heat transfer of a water-cooled lance for blowing oxidizing gas in an electrical arc furnace[J]. Journal of Energy Conversion and Management, 2017, 57(5): 43-56
                [13] SEYED M G, MEINHARD T S. Numerical simulation of the multistage ultra-high efficiency gas turbine engine[C]//ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition, 2017.
                [14] BRUCE A R, BRUCE J W. A new algorithm for five-hole probe calibration, data reduction, and uncertainty analysis[R]. NASA Technical Memorandum 106458, 1994.
                [15] ZEIGER M D, CHALMETA L P, TELIONIS D P. Tip geometry effects on calibration and performance of seven-hole probes[C]//29th AIAA, Fluid Dynamics Conference. 1998.
                [16] GONSALE J C, ARRINGTON E A. Five-hole flow angle probe calibration for the NASA glenn icing research tunnel[C]//NASA CR—1999-202330, 1999.
                [17] 杨三东, 艾利, 封娇, 等. 二极管阵列检测器波长校准方法研究及评价[J]. 新版彩神8app, 2018, 44(7): 19-24