内容标题9

  • <tr id='DbILiF'><strong id='DbILiF'></strong><small id='DbILiF'></small><button id='DbILiF'></button><li id='DbILiF'><noscript id='DbILiF'><big id='DbILiF'></big><dt id='DbILiF'></dt></noscript></li></tr><ol id='DbILiF'><option id='DbILiF'><table id='DbILiF'><blockquote id='DbILiF'><tbody id='DbILiF'></tbody></blockquote></table></option></ol><u id='DbILiF'></u><kbd id='DbILiF'><kbd id='DbILiF'></kbd></kbd>

    <code id='DbILiF'><strong id='DbILiF'></strong></code>

    <fieldset id='DbILiF'></fieldset>
          <span id='DbILiF'></span>

              <ins id='DbILiF'></ins>
              <acronym id='DbILiF'><em id='DbILiF'></em><td id='DbILiF'><div id='DbILiF'></div></td></acronym><address id='DbILiF'><big id='DbILiF'><big id='DbILiF'></big><legend id='DbILiF'></legend></big></address>

              <i id='DbILiF'><div id='DbILiF'><ins id='DbILiF'></ins></div></i>
              <i id='DbILiF'></i>
            1. <dl id='DbILiF'></dl>
              1. <blockquote id='DbILiF'><q id='DbILiF'><noscript id='DbILiF'></noscript><dt id='DbILiF'></dt></q></blockquote><noframes id='DbILiF'><i id='DbILiF'></i>
                登录    |    注册

                您好,欢迎来到新版彩神8app科技资〖讯平台!

                首页> 《新版彩神8app》期刊 >本期导读>电便笑著站了起來磁热多物理耦合成像检测方法研究

                电磁热多物理耦合成像检测方法研究

                175    2020-12-22

                ¥0.50

                全文售价

                作者:李浩然1, 高斌1, 张喜源1, 苗玲1, 田贵云1,2

                作者单位:1. 电子科技大学自动化工程学院,四川 成都 611731;
                2. 纽卡斯尔大①学工学院,纽卡斯尔 NE17RU


                关键词:涡流检测;热成像時候检测;L型磁轭;阵列PCB线圈


                摘要:

                涡流和热成像检测技术均可应用于导体材料评估∞和无损探伤。传统的涡流检测系①统分辨率低,无法对缺陷轮廓进行精确定量;而传统↑的热成像系统往往需要大功率的一道光芒閃爍激励装置,且很难消除样件表面杂质或辐射率异常引姑娘起的误判。为互补两种检测技术的优势,该文提出一种基于电磁热多物理场耦合效应的成像检测▓方法。该方法包含一种新何林眼中也泛著嗜血型L型磁轭和阵列PCB线圈结构,可通过磁轭激励样件产生的电磁效应和热效应分别对缺陷进行磁成像和热成像,以达到提高检测哼哼可靠性的目的。实验结果表明:相比于他們都長什么樣单一涡流或热成像检测技术,该文所提出的传感结构可显著提高系统的可靠性和可检测性。


                Research on imaging detection method of thermo-electromagnetic multi-physical coupling effects
                LI Haoran1, GAO Bin1, ZHANG Xiyuan1, MIAO Ling1, TIAN Guiyun1,2
                1. School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China;
                2. School of Engineering, Newcastle University, Newcastle NE17RU, UK
                Abstract: Eddy current testing (ET) and thermography (ECT) are both effective non-destructive testing (NDT) methods applied to the evaluation of conductor materials. Conventional ET system has low detection resolution and cannot accurately quantify the contour of defects, while conventional ECT system requires high-power excitation source and it is hard to eliminate the misjudgments caused by impurities or abnormal emissivity on the sample surface. In order to complement the advantages of these two technologies, a novel detection method based on thermo-electromagnetic multi-physical coupling effects is proposed. In this method, a new type of L-shaped magnetic yoke with an array PCB coils structure is included. The electromagnetic and thermal effects generated by the yoke are used for magnetic imaging and thermal imaging of defects respectively, so as to enhance the reliability. The experimental results show that the proposed sensing structure can significantly improve the reliability and detectability of the system compare to single ET or ECT technology.
                Keywords: eddy current testing;thermal imaging detection;L-shaped magnetic yoke;array PCB coils
                2020, 46(12):99-104  收稿日期: 2020-09-22;收到修改稿日期: 2020-11-20
                基金项目: 国家自然科学基金(61971093,61527803,61960206010)
                作者简介: 李浩然(1992-),男,四川成都市人,博ω 士研究生,研究方向为电磁无损检测
                参考文献
                [1] TRIMM M. An overview of nondestructive evaluation methods[J]. Practical Failure Analysis, 2003, 3(3): 17-31
                [2] GAO B, HE Y, WOO W L, et al. Multidimensional tensor-based inductive thermography with multiple physical fields for offshore wind turbine gear inspection[J]. IEEE Transactions on Industrial Electronics, 2016, 63(10): 6305-6315
                [3] TIAN G Y, YIN A, GAO B, et al. Eddy current pulsed thermography for fatigue evaluation of gear[C]//American Institute of Physics, 2014.
                [4] YANG R, HE Y. Optically and non-optically excited thermography for composites: a review[J]. Infrared Physics & Technology, 2016, 75: 26-50
                [5] GAO B, WOO W L, HE Y, et al. Unsupervised sparse pattern diagnostic of defects with inductive thermography imaging system[J]. IEEE Transactions on Industrial Informatics, 2015, 12(1): 371-383
                [6] LUCIA O, MAUSSION P, DEDE E J, et al. Induction heating technology and its applications: past developments, current technology, and future challenges[J]. IEEE Transactions on Industrial Electronics, 2014, 61(5): 2509-2520
                [7] MOROZOV M, RUBINACCI G, TAMBURRINO A, et al. Numerical models of volumetric insulating cracks in eddy-current testing with experimental validation[J]. IEEE Transactions on Magnetics, 2006, 42(5): 1568-1576
                [8] ABIDIN I Z, TIAN G Y, WILSON J, et al. Quantitative evaluation of angular defects by pulsed eddy current thermography[J]. NDT & E International, 2010, 43(7): 537-546
                [9] YU F, NAGY P B. Simple analytical approximations for eddy current profiling of the near-surface residual stress in shot-peened metals[J]. J. Appl, 2004, 96: 1257-1266
                [10] ABU-NABAH B A, HASSAN W T, BLODGETT M P, NAGY P B. Limitation of eddy current residual stress profiling in surface- treated engine alloys of various hardness levels[J]. AIP Conference Proceedings, 2010, 1211(1): 1357-1364
                [11] HE Y, YANG R, WU X, et al. Dynamic scanning electromagnetic infrared thermographic analysis based on blind source separation for industrial metallic damage evaluation[J]. IEEE Transactions on Industrial Informatics, 2018, 14(12): 5610-5619
                [12] LIU Z, GAO B, TIAN G Y. Natural cracks diagnosis system based on novel l-shaped electromagnetic sensing thermography[J]. IEEE Transactions on Industrial Electronics, 2020, 67(11): 9703-9714
                [13] LI H, GAO B, MIAO L, et al. Multiphysics structured eddy current and thermography defects diagnostics system in moving mode[J]. IEEE Transactions on Industrial Informatics, 2020, 99: 1
                [14] LI X, GAO B, LIU Z, et al. Microcracks detection based on shuttle-shaped electromagnetic thermography[J]. IEEE Sensors Journal, 2020, 20(21): 12961-12971