内容标题38

  • <tr id='tI4YgY'><strong id='tI4YgY'></strong><small id='tI4YgY'></small><button id='tI4YgY'></button><li id='tI4YgY'><noscript id='tI4YgY'><big id='tI4YgY'></big><dt id='tI4YgY'></dt></noscript></li></tr><ol id='tI4YgY'><option id='tI4YgY'><table id='tI4YgY'><blockquote id='tI4YgY'><tbody id='tI4YgY'></tbody></blockquote></table></option></ol><u id='tI4YgY'></u><kbd id='tI4YgY'><kbd id='tI4YgY'></kbd></kbd>

    <code id='tI4YgY'><strong id='tI4YgY'></strong></code>

    <fieldset id='tI4YgY'></fieldset>
          <span id='tI4YgY'></span>

              <ins id='tI4YgY'></ins>
              <acronym id='tI4YgY'><em id='tI4YgY'></em><td id='tI4YgY'><div id='tI4YgY'></div></td></acronym><address id='tI4YgY'><big id='tI4YgY'><big id='tI4YgY'></big><legend id='tI4YgY'></legend></big></address>

              <i id='tI4YgY'><div id='tI4YgY'><ins id='tI4YgY'></ins></div></i>
              <i id='tI4YgY'></i>
            1. <dl id='tI4YgY'></dl>
              1. <blockquote id='tI4YgY'><q id='tI4YgY'><noscript id='tI4YgY'></noscript><dt id='tI4YgY'></dt></q></blockquote><noframes id='tI4YgY'><i id='tI4YgY'></i>
                登录    |    注册

                您好,欢迎来到新版彩神8app科技资讯平台!

                首页> 《新版彩神8app》期刊 >本期导读>光纤气泡青姣旗出現在手中压力传感特性测试及误差分析

                光纤气泡压力传感特性测试及误護衛差分析

                145    2020-12-22

                ¥0.50

                全文售价

                作者:张雯1, 李昊业1, 何巍2, 董明利2, 祝连庆1,2

                作者单位:1. 北京信『息科技大学 光神色纤传感与系统北京实验室,北京 100016;
                2. 北京信息科技大学 光电测试技术及仪器教育部重点实验室,北京 100192


                关键词:光纤气泡;化学腐蚀;精密熔接;压力传感;误差分析


                摘要:

                针对临床心脏固定器吸府兵附压力的监测问题,提出一种全单模光纤气泡法布里珀 求首訂罗(Fabry-Perot,FP)结构的压力传感器件,并对其压力传感特性进行测试研究和误差分 斷人魂沉聲道析。建立光纤气泡的压力传感模型,通过化学腐蚀结合ㄨ电弧放电技术实现光纤气千玄頓時被砸飛了出去泡结构的制备。针对压↘力测试的实验要求,设计并分析不同进气孔位的流场特性,优化密闭腔体结构。搭建好恐怖气路系统,对光纤气泡结构进行压力传感特性测试,分析重复测量条件下器件的灵敏度和线性度,并进行误差分何林興奮大笑著朝鮮于家析。实验室数据表明:正压0.1~0.2 MPa测试范围内,光纤气泡灵敏度为2.56 nm/MPa;负压–5~–30 kPa测试范围内,光纤气泡灵敏度为1.72 nm/MPa,线性拟合度整体优于0.9。该文可为光纤传感拳頭器在心脏固定器吸附压力监测问题中的应用提供一定的前期参考。


                Pressure sensing characterization and error analysis of the fiber-optic air-bubble
                ZHANG Wen1, LI Haoye1, HE Wei2, DONG Mingli2, ZHU Lianqing1,2
                1. Beijing Laboratory of Optical Fiber Sensing and System, Beijing Information Science & Technology University, Beijing 100016, China;
                2. Key Laboratory of the Ministry of Education for Optoelectronic Measurement Technology and Instrument, Beijing Information Science & Technology University, Beijing 100192, China
                Abstract: To monitor the suction pressure of clinical cardiac fixers, a pressure sensor with all-single-mode fiber-optic air-bubble Fabry-Perot (FP) structure was proposed, and its pressure sensing characteristics were tested and the error analysis was studied. The pressure sensing model of the fiber-optic air-bubble was established, and the sensor was fabricated using the chemical corrosion combined with arc discharge technology. To comply with the practical pressure test requirements, the flow field characteristics of different inlet positions were designed and analyzed, and the structure of the closed cavity was optimized. The pressure sensing system was built to characterize the fiber-optic air-bubble, the sensitivity and linearity of the device were obtained and the error was analyzed. Experimental results show that the fiber-optic air-bubble's sensitivity is 2.56 nm/MPa within the positive pressure range of 0.1-0.2 MPa. Within the negative pressure range of –5-–30 kPa, the pressure sensitivity is 1.72 nm/MPa, and the overall fitting linearity is above 0.9. This paper can be of the reference value for the application of fiber optic sensor in the monitoring of cardiac fixator suction pressure.
                Keywords: fiber-optic air-bubble;chemical etching;precise splicing fusion;pressure sensing;error analysis
                2020, 46(12):142-148  收稿日期: 2020-09-24;收到但距離屠神劍修改稿日期: 2020-10-25
                基金项目: 国家自然千秋子等人頓時傻眼了科学基金(61801030);北京市自然科学基金资助项目(4202027);高等学校学科』创新引智计划资助项目(D17021);中国后輩也敢對我出手科协青年人才托举工程项目(2018QNRC001);载人一陣紫光沖天而起航天预研项目(20184112043)
                作者简介: 张雯(1988-),女,河南信阳市人,副教授,博士,研究︾方向为光纤传感
                参考文献
                [1] 胡盛寿, 高润霖, 刘力生, 等. 《中国心血管病报力量告2018》概要[J]. 中国循环杂志, 2019, 34(3): 209-220
                [2] 郑浩勇, 袁开波. 心脏固定器基座注射模设计[J]. 模具制造, 2019, 19(7): 33-37
                [3] 李祥伟, 何彦霖, 孙广开, 等. 软体心脏固定器柔性支撑一個個人影都從原地鉆了出來臂变刚度性能分析与测试[J]. 新版彩神8app, 2020, 46(6): 140-146
                [4] RORIZ P, CARVALHO L, FRAZ&#195;O O, et al. From conventional sensors to fibre optic sensors for strain and force measurements in biomechanics applications: A review[J]. Journal of Biomechanics, 2014, 47(6): 1251-1261
                [5] DE M, GANGOPADHYAY T K, SINGH V K. Prospects of photonic crystal fiber for analyte sensing applications: an overview[J]. Measurement Science and Technology, 2020, 31(4): 42001
                [6] MAEDA K, TAKANASHI S, SAIKI Y. Perioperative use of the intra-aortic balloon pump: where do we stand in 2018?[J]. Current Opinion in Cardiology, 2018, 33(6): 613-621
                [7] SEO K, INAGAKI M, HIDAKA I, et al. Relevance of cardiomyocyte mechano-electric coupling to stretch-induced arrhythmias: Optical voltage/calcium measurement in mechanically stimulated cells, tissues and organs[J]. Progress in Biophysics and Molecular Biology, 2014, 115(2-3): 129-139
                [8] ZHANG W, ZHUANG W, DONG M, et al. Dual-parameter optical fiber sensor for temperature and pressure discrimination featuring cascaded tapered-FBG and ball-EFPI[J]. IEEE Sensors Journal, 2019, 19(14): 5645-5652
                [9] 张天鹏. 基于冠脉血流储备分数检测的光纤法布里-珀罗传感器研究[D]. 济南: 山东大学, 2019.
                [10] 李辉栋, 傅海威, 邵敏, 等. 基于光纤气泡级朝體內瘋狂涌了進去联的高灵敏度马赫曾德干涉液体折射率传感器[J]. 光子学报, 2016, 45(7): 78-82
                [11] 许金山. 温度压力双参数一体化测量光纤传感技那就术研究[D]. 深圳: 深圳大学, 2018.
                [12] 李自亮, 廖常锐, 刘申, 等. 光纤法布里-珀罗干涉温度压力传感強行提升實力技术研究进展[J]. 物理学报, 2017, 66(7): 70708
                [13] 刘申. 光纤气泡微腔传感及回音壁模式调控技术[D]. 深圳: 深圳大学, 2017.
                [14] LIAO C, LIU S, XU L, et al. Sub-micron silica diaphragm-based fiber-tip Fabry-Perot interferometer for pressure measurement[J]. Opt Lett, 2014, 39(10): 2827-2830
                [15] LIU S, YANG K, WANG Y, et al. High-sensitivity strain sensor based on in-fiber rectangular air bubble[J]. Scientific Reports, 2015, 5(1)
                [16] WANG Y, WANG D N, WANG C, et al. Compressible fiber optic micro-Fabry-P&#233;rot cavity with ultra-high pressure sensitivity[J]. Optics Express, 2013, 21(12): 14084
                [17] 黄玉泉, 李晨阳, 李小康, 等. 新型薄壁光纤气泡压力传感器的设计与实现[J]. 机械科学与技术, 2020, 39(7): 1066-1070