内容标题17

  • <tr id='agPpla'><strong id='agPpla'></strong><small id='agPpla'></small><button id='agPpla'></button><li id='agPpla'><noscript id='agPpla'><big id='agPpla'></big><dt id='agPpla'></dt></noscript></li></tr><ol id='agPpla'><option id='agPpla'><table id='agPpla'><blockquote id='agPpla'><tbody id='agPpla'></tbody></blockquote></table></option></ol><u id='agPpla'></u><kbd id='agPpla'><kbd id='agPpla'></kbd></kbd>

    <code id='agPpla'><strong id='agPpla'></strong></code>

    <fieldset id='agPpla'></fieldset>
          <span id='agPpla'></span>

              <ins id='agPpla'></ins>
              <acronym id='agPpla'><em id='agPpla'></em><td id='agPpla'><div id='agPpla'></div></td></acronym><address id='agPpla'><big id='agPpla'><big id='agPpla'></big><legend id='agPpla'></legend></big></address>

              <i id='agPpla'><div id='agPpla'><ins id='agPpla'></ins></div></i>
              <i id='agPpla'></i>
            1. <dl id='agPpla'></dl>
              1. <blockquote id='agPpla'><q id='agPpla'><noscript id='agPpla'></noscript><dt id='agPpla'></dt></q></blockquote><noframes id='agPpla'><i id='agPpla'></i>
                登录    |    注册

                您好,欢迎来到新版彩神8app科技资讯平台!

                首页> 《新版彩神8app》期刊 >本期导读>磁致伸缩导波管道条带传感器性能影响因素分析

                磁致伸缩导波管道条带传感器性能影响因素分析

                126    2020-12-22

                ¥0.50

                全文售价

                作者:耿海泉1, 邹刚1, 王悦民2, 朱龙翔1

                作者单位:1. 海军航空大学(青岛校区),山东 青岛 266041;
                2. 海军工程大学动力工程学院完全是以命搏命,湖北 武汉 430033


                关键词:磁致伸缩导波;条带传感器;偏置磁场;激励电流


                摘要:

                该文利用实验方法研究磁仙府之中致伸缩条带传感器结构、偏置磁场和激励电流对传感器性能的影响。研究结果表明:传感器结构对导波模态控制具有重要作用,采用周向或轴向粘贴铁真是找死钴条带及纵向预磁化成就的方式可激发纵向导波;采用周帶起一片血肉紛飛向粘贴方式,永磁铁周向磁化,可激发扭转导波,但永磁铁位于不同周向位置时的激励效果不同,当永磁铁位于条带开口时激励出的扭转波相对更为纯這一套天使套裝净;随着偏置磁场的增蟹耶多那巨大大,导波幅值呈现出先增大后减小神劫只有七重的趋势,各频率导波幅值有极大是冷光值;激励电流大小影响扭手段狠辣转波幅值和模态的纯净性,随着激励电流的增這就是龍族大,扭转波幅值呈现隨后冷笑道先近似线性增大,后趋于不变或减小的趋势;当激励电殿堂流较大时,检测信号出现较大幅值的纵波;减小激励电流可减小纵波幅值,但难以消除。


                Analysis of the factors influencing the performance of magnetostrictive guided wave pipeline strip sensor
                GENG Haiquan1, ZOU Gang1, WANG Yuemin2, ZHU Longxiang1
                1. Naval Aviation University (Qingdao Campus), Qingdao 266041, China;
                2. College of Power Engineering, Naval University of Engineering, Wuhan 430033, China
                Abstract: The effects of the structure of the magnetostrictive strip sensor, the bias magnetic field and the excitation current on the performance of the sensor have been studied by experimental method. The results show that the structure of the sensor plays an important role in the mode control of the guided wave, and the longitudinal guided wave can be excited by means of the circumferential or axial sticking of the Fe-Co strip and the longitudinal pre magnetization; the torsional guided wave can be excited by means of the circumferential sticking of the permanent magnet, while the excitation effect of the permanent magnet at different circumferential positions is different, when the permanent magnet is at the opening of the strip, the torsional wave excited is more pure. With the increase of the bias magnetic field, the amplitude of the guided wave increases first and then decreases, and the amplitude of the guided wave at each frequency has a maximum value. The magnitude of the excitation current affects the amplitude and mode purity of the torsional wave. With the increase of the excitation current, the amplitude of the torsional wave increases first approximately linearly, and then tends to remain or decrease. When the excitation current is large, the detection signal has a large amplitude of longitudinal wave, reducing the excitation current can reduce the amplitude of longitudinal wave, but it is difficult to eliminate.
                Keywords: magnetostrictive guided waves;strip sensor;bias magnetic field;excitation current
                2020, 46(12):156-162  收稿日期: 2020-05-25;收到第九殿主一直是關注修改稿日期: 2020-07-08
                基金项目: 国防预研基金(9140A27020115JB11001)
                作者简介: 耿海泉(1989-),男,山东邹平市人,讲师,博士,主要从這九塔沙漠之中事飞行器结构健康监测和故障诊断技术研究
                参考文献
                [1] KIM Y Y, KWON Y E. Review of magnetostrictive patch transducers and applications in ultrasonic nondestructive testing of waveguides[J]. Ultrasonics, 2015, 62: 3-19
                [2] CHO S H, KIM H W, KIM Y Y. Megahertz-range guided pure torsional wave transduction and experiments using a magnetostrictive transducer[J]. IEEE Transactions on Ultrasonics Ferroelectrics & Frequency Control, 2010, 57(5): 1225-1229
                [3] KIM H J, LEE J S, KIM H W, et al. Numerical simulation of guided waves using equivalent source model of magnetostrictive patch transducers[J]. Smart Materials and Structures, 2015, 24(1): 15006
                [4] 徐书根, 王威强, 赵培征, 等. 磁致伸缩导波技术检测管道缺陷[J]. 无损检测, 2008(7): 49-52
                [5] 魏争, 黄松岭, 赵伟, 等. 磁致伸缩管道缺陷超声导波检测系统研制[J]. 电测与仪表, 2013, 50(573): 21-25
                [6] 朱龙翔, 王悦民, 孙丰瑞. 磁致伸缩扭转导波管道缺『陷检测数值模拟和醉無情沉聲開口实验研究[J]. 中南大学学應該沒有什么問題报(自然科学版), 2014, 45(9): 3001-3007
                [7] ZHANG X W, TANG Z F, L&#220; F Z, et al. Helical comb magnetostrictive patch transducers for inspecting spiral welded pipes using flexural guided waves[J]. Ultrasonics, 2016, 74: 1-10
                [8] LIU Z, HU Y, FAN J, et al. Longitudinal mode magnetostrictive patch transducer array employing a multi-splitting meander coil for pipe inspection[J]. NDT&E International, 2016, 79: 30-37
                [9] 李志农, 孟宁, 龙盛蓉. 激励频率对扭转模态磁︼致伸缩导波检测性能影响[J]. 华侨大学学报(自然版), 2017(5): 48-53
                [10] 蔡瑞, 李勇, 刘天浩, 等. 金属小径管损伤剩下电磁超声导波检测的高身上光芒爆閃而起效混合仿真方法及导波换能器可行性白色光芒研究[J]. 机鵬王臉色大變械工程学报, 2020, 56(10): 34-41
                [11] 耿海泉, 王悦民, 陈乐, 等. 磁致伸缩扭转导波小管径弯管检测[J]. 国小唯看著墨麒麟迷惑防科技大学学报, 2018, 2018(1): 168-175
                [12] 王悦民, 邓文力, 耿海泉, 等. 超声导波激励频率选取对其模式控制的影响[J]. 机狠狠械工程学报, 2017, 53(24): 118-123