内容标题5

  • <tr id='HAGTD2'><strong id='HAGTD2'></strong><small id='HAGTD2'></small><button id='HAGTD2'></button><li id='HAGTD2'><noscript id='HAGTD2'><big id='HAGTD2'></big><dt id='HAGTD2'></dt></noscript></li></tr><ol id='HAGTD2'><option id='HAGTD2'><table id='HAGTD2'><blockquote id='HAGTD2'><tbody id='HAGTD2'></tbody></blockquote></table></option></ol><u id='HAGTD2'></u><kbd id='HAGTD2'><kbd id='HAGTD2'></kbd></kbd>

    <code id='HAGTD2'><strong id='HAGTD2'></strong></code>

    <fieldset id='HAGTD2'></fieldset>
          <span id='HAGTD2'></span>

              <ins id='HAGTD2'></ins>
              <acronym id='HAGTD2'><em id='HAGTD2'></em><td id='HAGTD2'><div id='HAGTD2'></div></td></acronym><address id='HAGTD2'><big id='HAGTD2'><big id='HAGTD2'></big><legend id='HAGTD2'></legend></big></address>

              <i id='HAGTD2'><div id='HAGTD2'><ins id='HAGTD2'></ins></div></i>
              <i id='HAGTD2'></i>
            1. <dl id='HAGTD2'></dl>
              1. <blockquote id='HAGTD2'><q id='HAGTD2'><noscript id='HAGTD2'></noscript><dt id='HAGTD2'></dt></q></blockquote><noframes id='HAGTD2'><i id='HAGTD2'></i>
                登录    |    注册

                您好,欢迎来到新版彩神8app科技资讯平台!

                首页> 《新版彩神8app》期刊 >本期导读>基于瞬态平面热源法的牛皮质骨导热系数测试实验研究

                基于瞬态平面热源法的牛皮质骨导热系数测试实验研究

                181    2022-03-24

                ¥0.50

                全文售价

                作者:姚帅, 赵韡, 陈俊伟

                作者单位:中北大学,山西 太原 030051


                关键词:瞬态平面热源法;导热系数;生物骨;牛皮质骨


                摘要:

                为模拟皮质骨切削的温天仙搖了搖頭度传递过程,需要可【靠的导热系数参数。该文阐述基于瞬态平只能這么做了面热源法测量牛皮质骨导热系数的原理及实验方法。该方→法针对牛皮质骨在垂直、交叉、平行三个正交方向的导热系数进行测量,并研究其对皮质骨导热系数的影响。实验表明:在温度、湿度等环境因素及组织水分为主的骨材料性能等条件相对确定的前提下,皮质骨的平行方向导热系数▓测量平均值为0.6286 W/(m·K),交叉方向导热系↙数测量平均值为0.6288 W/(m·K),垂直方Ψ向导热系数测量平均值为0.7257 W/(m·K);皮质骨导热系∑数在交叉方向与平行方向上差「异很小,在垂直方向上实验若是斷人魂暗中下黑手测量值较另外两个方向增长難道我會怕你們不成约15%;在模㊣ 型构建过程中,导热系数在平行方向和交叉方向可不做区分,取值为0.62~0.63 W/(m·K),在垂直方向可取0.72~0.73 W/(m·K)为参考值。


                Experimental research on thermal conductivity test of bovine cortical bone based on transient plane source method
                YAO Shuai, ZHAO Wei, CHEN Junwei
                North University of China, Taiyuan 030051, China
                Abstract: In order to simulate the temperature transfer process of cortical bone cutting, reliable thermal conductivity parameters are required. The article describes the principle and experimental method of measuring the thermal conductivity of cortical bone based on the transient plane source method. The method measures the thermal conductivity of cortical bone in three orthogonal directions, vertical, cross, and parallel, and studies its influence on the thermal conductivity of cortical bone. Experiments show that: under the premise of relatively certain conditions such as temperature, humidity and other environmental factors and tissue moisture-based bone material performance and other conditions, the average measured thermal conductivity of the cortical bone in the parallel direction is 0.6286 W/(m&#183;K), the average measured thermal conductivity in the cross direction is 0.6288 W/(m&#183;K), and the average measured thermal conductivity in the vertical direction is 0.7257 W/(m&#183;K). The thermal conductivity of cortical bone has little difference between the cross direction and the parallel direction, and the experimental measurement value in the vertical direction has increased by about 15% compared with the other two vertical directions. In the process of model construction, the thermal conductivity in the parallel direction and the cross direction can be omitted to distinguish, the value is 0.62-0.63 W/(m&#183;K). In the vertical direction, 0.72-0.73 W/(m&#183;K) can be taken as a reference value.
                Keywords: transient plane source;thermal conductivity;biological bone;bovine cortical bone
                2022, 48(3):41-46  收稿日期: 2021-08-09;收到修改稿日期: 2021-09-25
                基金项目: 国家自然科学基金青年基金项目(51905499);中国博士后科学基金面上项目(2019M661067)
                作者简介: 姚帅(1996-),男,山ζ西吕梁市人,硕我倒要看看你能接我幾棍士研究生,专业方向为☉生物组织切削技术
                参考文献
                [1] LEE J B, RABIN Y, OZDOGANLAR O B. A new thermal model for bone drilling with applications to orthopaedic surgery[J]. Medical Engineering & Physics, 2011, 33(10): 1234-44
                [2] MEDIOUNI M, KUCKLICK T R, PONCET S, et al. An overview of thermal necrosis: present and future[J]. Current Medical Research and Opinion, 2019, 35: 1555-1562
                [3] SUNDEN G. Some aspects of longitudinal bone growth: An experimental study of the rabbit tibia[J]. Acta Orthopaedica Scandinavica, 1967, 38(S103): 1-134
                [4] BIYIKLI S, MODEST M F, TARR R R. Measurements of thermal properties for human femora[J]. Journal of biomedical materials research, 1986, 20(9): 1335-45
                [5] MOSES W, WITTHAUS F W, HOGAN H A, et al. Measurement of the thermal conductivity of cortical bone by an inverse technique[J]. Experimental Thermal and Fluid Science, 1995, 11: 34-39
                [6] FELDMANN A, WILI P, MAQUER G B, et al. The thermal conductivity of cortical and cancellous bone[J]. European cells & materials, 2018, 35: 25-33
                [7] LEE J, HUH S J, LEE H J. Experimental determination of thermal conductivity of cortical bone by compensating heat loss in parallel plate method[J]. International Journal of Precision Engineering and Manufacturing, 2018, 19: 569-576
                [8] 丰正功, 李艳宁. 基于TPS法简化模型测量物质导火之力热系数[J]. 纳米技术与精密工程, 2017, 15(4): 323-327
                [9] 贺永智, 徐旭, 潘江, 等. 基于TPS法液体导热系数的测量[J]. 新版彩神8app, 2021, 47(5): 52-57
                [10] SULEIMAN B M, KARAWACKI E, GUSTAFSSON S E. Thermal conductivity and diffusivity of KH 2 PO 4 and NH 4 H 2 PO 4 polycrystalline samples near their phase transitions[J]. Journal of Materials Research, 1994, 9(7): 1895-1898
                [11] ZELENOV E S. Experimental investigation of the thermophysical properties of compact bone[J]. Mechanics of Composite Materials, 1986, 21: 759-762
                [12] ABOUZGIA M B, JAMES D F. Temperature rise during drilling through bone[J]. The International Journal of Oral and Maxillofacial Implants, 1997, 12(3): 342-53
                [13] WIGGINS K L, MALKIN S. Drilling of bone[J]. Journal of biomechanics, 1976, 9(9): 553-9
                [14] KRAUSE W R. Orthogonal bone cutting: saw design and operating characteristics[J]. Journal of biomechanical engineering, 1987, 109(3): 263-71
                [15] SIERPOWSKA J, HAKULINEN M A, TOYRAS J, et al. Interrelationships between electrical properties and microstructure of human trabecular bone[J]. Physics in medicine and biology, 2006, 51(20): 5289-303