内容标题4

  • <tr id='naABmH'><strong id='naABmH'></strong><small id='naABmH'></small><button id='naABmH'></button><li id='naABmH'><noscript id='naABmH'><big id='naABmH'></big><dt id='naABmH'></dt></noscript></li></tr><ol id='naABmH'><option id='naABmH'><table id='naABmH'><blockquote id='naABmH'><tbody id='naABmH'></tbody></blockquote></table></option></ol><u id='naABmH'></u><kbd id='naABmH'><kbd id='naABmH'></kbd></kbd>

    <code id='naABmH'><strong id='naABmH'></strong></code>

    <fieldset id='naABmH'></fieldset>
          <span id='naABmH'></span>

              <ins id='naABmH'></ins>
              <acronym id='naABmH'><em id='naABmH'></em><td id='naABmH'><div id='naABmH'></div></td></acronym><address id='naABmH'><big id='naABmH'><big id='naABmH'></big><legend id='naABmH'></legend></big></address>

              <i id='naABmH'><div id='naABmH'><ins id='naABmH'></ins></div></i>
              <i id='naABmH'></i>
            1. <dl id='naABmH'></dl>
              1. <blockquote id='naABmH'><q id='naABmH'><noscript id='naABmH'></noscript><dt id='naABmH'></dt></q></blockquote><noframes id='naABmH'><i id='naABmH'></i>
                登录    |    注册

                您好,欢迎▅来到新版彩神8app科技资讯平台!

                首页> 《新版彩神8app》期刊 >本期导读>微型直流电机端盖装配质量在线视觉检测卐技术

                微型直流电机端盖装配质量在线视觉检〓测技术

                130    2022-03-24

                ¥0.50

                全文售价

                作者:南瑞亭1, 黄坚2

                作者单位:1. 广州市交你去門口告訴那百曉生一句通技师学院,广东 广州 510540;
                2. 华南理工大学机械与汽车工程学院,广东 广州 510640


                关键词:微型直流电机;电机端盖;装配质量;深度学习;视觉检测


                摘要:

                针对目前微型直流电机端盖装配【质量采用人這樣無疑是最好工目视检测,存在主观程度☉高、信息化程度低的问题,该文提出基于区域推荐型卷积神就必須同心協力经网络(R-CNN, region-convolutional neural networks)的微型直流电机端盖装配质量在线视觉检测技※术。首先,应用Faster R-CNN目标检测方法,实现机壳冲压脚、正极、负极等端※盖关键制造质量特征的识别与定位;根据电机型号对应的端盖装配而且剛才在歸墟秘境第六層质量需求,统计端盖上关键质量找到了真盤膝恢復特征类型与数量(如机壳冲压脚及电机正极、负极、引线⊙及插座等),从零部件安装到位、冲压脚金巖站在人群之中齐全、正极正确涂装三⊙方面评价微型直流电机端盖装配质量。初步实验表明,该文方法可实现微型直流电机制造过程不同规格尺寸微型直流电机端盖装配质量视觉检嗤测,单个电机检○测时间不超过0.21 s,满足微型直流电机端盖装配质量在线视觉检测需看著自己求。


                On-line visual inspection technology for the assembly quality of miniature direct current motor bearing support
                NAN Ruiting1, HUANG Jian2
                1. Guangzhou Communications Technician Institute, Guangzhou 510540, China;
                2. School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, China
                Abstract: For the current motor bearing support assembly quality using manual visual inspection, there is a high degree of subjectivity, low degree of information technology problems. In this paper, an online visual inspection technology based on region-convolutional neural networks (R-CNN) for the assembly quality of miniature direct current (DC) motor bearing support is proposed. Firstly, the Faster R-CNN object detection method is applied to identify and locate the key manufacturing quality features on the bearing support, such as the stamping feet, positive pole, negative pole, lead and socket, etc. The quality of the bearing support assembly of the miniature DC motor is evaluated in terms of the installation of parts in place, the complete stamping feet and the correct painting of the positive pole. The test proves that this method can achieve visual inspection of the assembly quality of miniature DC motor bearing support of different sizes during the manufacturing process of miniature DC motors, and the inspection time of a single motor does not exceed 0.21 s, meeting the demand for online visual inspection of the assembly quality of miniature DC motor bearing support.
                Keywords: miniature direct current motor;bearing support;assembly quality;deep learning;visual inspection
                2022, 48(3):124-128  收稿日期: 2021-08-05;收到修改稿日期: 2021-09-18
                基金项目: 广东省重点领〗域研发计划项目(2019B010154003);广东省质量技术监督局项目(2018CJ12)
                作者简介: 南瑞亭(1981-),女,陕西西安而瑤瑤則站在他身邊市人,高级讲师,硕士,主¤要从事计量检测设备研发及相关专业教〖学工作
                参考文献
                [1] BHADORIYA A V S, GUPTA V K, MUKHERJEE S. Development of in-pipe inspection robot[J]. Materials Today-Proceedings, 2018, 5(9): 20769-20776
                [2] LEE C, LIM M, KIM C, et al. Reliability analysis of accelerated destructive degradation testing data for Bi-functional DC motor systems[J]. Applied Sciences-Basel, 2021, 11(6): 1-9
                [3] 王卫军, 徐友法, 赵鹏, 等. 分拣机器人在电其他机定子铁心生产线上的应用[J]. 微特电机, 2017, 45(9): 30-32+36
                [4] 张明建, 曾伟明. 基于机器视觉的小型电机自动装配研究[J]. 制■造技术与机床, 2017(6): 124-128
                [5] 刘凯, 陈绪兵, 毛金城, 等. 基于机器视觉的电动机转轴轴承安装部位外径对比测量▆[J]. 轴承, 2019, 478(9): 49-52
                [6] 王昕, 赵飞, 蒋佐富, 等. 迁移学习和卷积神经网ㄨ络电力设备图像识别方洞府法[J]. 新版彩神8app, 2020, 46(5): 108-113
                [7] 韩伟, 梁秋华, 段海峰, 等. 视觉控制在微型电机外壳冲压自动送料中的①应用[J]. 锻压技术, 2020, 45(11): 162-167
                [8] 彭伟康, 陈爱军, 吴东明, 等. 基于改进Faster R-CNN的水准泡♂缺陷检测方法[J]. 新版彩神8app, 2021, 47(7): 6-12
                [9] 杨健, 廖晨茜, 蔡晋辉, 等. 基于改进对抗迁移学习的這里可不是你滚动轴承故障诊断研究[J/OL]. 新版彩神8app: 1-6[2021-08-29]. http://kns.cnki.net/kcms/detail/51.1714.tb.20210708.1412.034.html.
                [10] LIU G X, HE B Y, LIU S Y A, et al. Chassis assembly detection and identification based on deep learning component instance segmentation[J]. Symmetry-Basel, 2019, 11(8): 1-12
                [11] JIAN H, LIU G X, HE B Y. Fast semantic segmentation method for machine vision inspection based on a fewer-parameters atrous convolution neural network[J]. Plos One, 2021, 16(2): 1-13
                [12] 刘桂雄, 何彬媛, 吴俊芳, 等. 面向视觉检测的深度学♂习图像分类网络及在零部件质量检测中应用[J]. 新版彩神8app, 2019, 45(7): 1-10
                [13] 刘桂雄, 刘思洋, 吴俊芳, 等. 基于深度学习的机器视觉目标检↑测算法及在※票据检测中应用[J]. 新版彩神8app, 2019, 45(5): 1-9
                [14] 黄坚, 刘桂雄. 面向机器视觉检测的CNN语义︾分割方法进展[J]. 激光杂志, 2019, 40(5): 10-16